Graph-based reinforcement learning

-> transferable HVAC control

HVAC-GRACE: Transferable Building Control via Graph RNNs

Anaïs Berkes Donna Vakalis David Rolnick Yoshua Bengio

- \circ Buildings consume 40% of global energy, with heating/cooling responsible for $\frac{1}{2}$
- \circ better controls are not transferable \rightarrow every building needs custom control
- Solution: Structure data from buildings as heterogeneous graphs!
- Why? this learns topology-agnostic functions, for zero-shot transfer
- HVAC-GRACE: first graph-based RL framework, learns for zero-shot transfer with spatial message-passing integrated into temporal GRUs + use RL (PPO) to improve the policy
- Work-in-progress: first steps established framework for building-building transfer; currently scaling to multi-building (~50k) training datasets

1: Input: Building epJSON file, training episodes N2: $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \leftarrow \text{ConstructGraph(epJSON)}$ 3: Initialise policy π_{θ} , critic V_{ϕ} , Graph RNN states

Algorithm 1 HVAC-GRACE Training Algorithm

- $\{h_v^0\}_{v\in\mathcal{V}}$
- 4: for episode = 1 to N do
- Reset environment, initialise s_0 , $\{h_v^0\}_{v\in\mathcal{V}}$
- for timestep t = 0 to T 1 do 6:
- Stage 1: Input Processing 7:
- parsed_obs \leftarrow ParseObservation(s_t) 8:
- $x^t \leftarrow \text{InputMLP}(\text{parsed_obs})$ 9:
- Stage 2: Graph RNN Processing 10:
- $\{h_v^t\}_{v\in\mathcal{V}} \leftarrow \text{GraphRNNCell}(x^t, \mathcal{E}, \{h_v^{t-1}\}_{v\in\mathcal{V}})$ 11:
- Stage 3: Action Generation 12:
- for each conditioned zone $v \in \mathcal{V}_c$ do 13:
 - $\mu_v, \log \sigma_v \leftarrow f_{\text{policy}}(h_v^t)$
- Sample $a_v \sim \mathcal{N}(\mu_v, \exp(\log \sigma_v))$ 15:
- end for 16:
- Execute actions $\{a_v\}_{v\in\mathcal{V}_c}$, observe s_{t+1}, r_t 17:
- end for 18:
- Update policy π_{θ} and critic V_{ϕ} using PPO 19:
- 20: **end for**

14:

HVAC-GRACE METHOD

- Stage 1: Parse building observations into heterogeneous graph (conditioned zones, unconditioned zones, outdoor environment)
- Stage 2: Use a modified GRU where the standard gate operations are replaced with graph neural networks, allowing zones to coordinate spatially while maintaining temporal memory of building dynamics.
- Stage 3: During training, a reinforcement learning agent learns type-specific control policies by interacting with building simulations (in EnergyPlus), optimizing for energy efficiency and comfort.
- Stage 4: Generate control actions for conditioned zones

WORK IN PROGRESS

- Tested on DOE Small Hotel (6 zones, 1 conditioned = 14% connectivity)
- Training/testing: Alabama → Montreal weather
- Key insight: this method requires sufficient connectivity between conditioned zones (~50%) to maintain gradient flow during learning—sparse building topologies cause transfer learning to fail.
- Roadmap for our current work: curating well-connected and domain-randomized building datasets (~50k buildings) to validate the full potential of this approach

THE GRAPH ADVANTAGE

Topology-Agnostic Design: HVAC-GRACE learns type-specific functions that work on semantic node types instead of requiring fixed-dimensional input vectors, enabling zero-shot transfer to new buildings without retraining.

Traditional fixed-vector approaches:

- Training on more buildings doesn't help much b/c each building needs its own model
- Can't effectively share knowledge between different building sizes

HVAC-GRACE:

- Every new building contributes to the same type-specific functions
- Knowledge accumulates across all buildings in the training set

Gradient flow in well-connected (left) vs. sparse (right) building topologies. Green nodes (HVAC conditioned zones) receive direct policy gradients; orange nodes (unconditioned zones) depend on message passing. Sparse connectivity disrupts learning.